

Dust on Mars

C. P. McKay
NASA Ames Research Center
cmckay@mail.arc.nasa.gov

Dust on the Moon and Mars?

- 1. What can we learn about Mars dust on the Moon?
- 2. Physical, chemical & biological properties of Mars dust
- 3. Future measurement needs

On the Moon and Mars the source of soil is comminuted basaltic rock

On Mars this has been further altered by:

- -Atmosphere & wind
- -lce, water, & brines
- -Oxidation
- -Volcanic gases
- -Life?

Mars • Global Dust Storm Hubble Space Telescope • WFPC2

Viking:

water frost on Mars

water flowed on the surface

The soils at the two Viking lander sites, Pathfinder, and the two MER sites are similar in composition.

Soderblom et al. Science 2005

Physical properties of Martian dust

- No direct data for sizes < 100 microns
- Dust on Mars is likely to be physically weathered due to wind transport, i.e. shards or long thin slivers of particles are unlikely.
- Other than the presence of oxidants and the absence of organics, the martian soil is not unusual. No reason to expect toxic metals etc.

Dust devil tracks on Mars

Before and After a "cleaning" event on Spirit March 2005

Clean airbags at Eagle Crater

Virtually all martian airborne dust is magnetic and an area can be kept clear with magnetic fields.

The "sweep" magnet:

- 1. Ring of dust is magnetic particles
- 2. Outside the ring is all particles (no magnetic field)
- 3. Center area is non-magnetic particles

SOIL SAMPLE The Viking Biology Experiments DUPLICATE TO CONTROL LABELED CARBON DIOXIDE LABELED NUTRIENT 14CO2 WATER NUTRIENT MEDIUM He Kr MEDIUM/ CO_2 LIGHT SOURCE CHROMATOGRPAH SAMPLE SAMPLE SAMPLE COLUMN **PYROLYSIS** GAS DETECTOR DETECTOR DETECTOR FOR H₂ N₂ FOR C14 FOR C14 02 CH4 CO2 PYROLYTIC RELEASE Α LABELED RELEASE C GAS EXCHANGE

Viking results indicate soil reactivity

- O₂ released upon humidification (GEx)
- CO₂ released from organics (LR)
- No organics detected in the soil (GCMS)

Oxidant levels indicated by Viking

Location	$GEx (KO_2 \rightarrow O_2)$	$LR(H_2O_2 \rightarrow O_2)$
Viking 1 (surface)	35 ppm/m	1ppm/m
Viking 2 (surface)	10	1
Viking 2 (sub-rock)	3	1

Gas Exchange Experiment (GEx)

- 1. O₂ was released on humidification
- 2. Reactivity was unaltered by heating
- 3. Concentration varies: 3-35 ppm/m

Sample	GEx O ₂	Oxidant
	(nmoles cm ⁻³)	$(KO_2 \rightarrow O_2)$
Viking 1 surface	770	35 ppm/m
Viking 2 surface	194	10
Viking 2 sub-rock	70	3

Labeled Release (LR)

- 1. CO₂ was released from organics
- 2. Reactivity was effected by heating
 - -eliminated by 160°C for 3 hours
 - --eliminated by 50°C for 3 hours
 - -reduced 70% by 46°C for 3 hours
 - -eliminated by 141 days at 10°C
- 3. Release constant, possibly only formate consumed

Sample	LR CO ₂	Oxidant
	(nmoles cm ⁻³)	$(H_2O_2 \rightarrow O)$
Viking 1 surface	~30	1 ppm/m
Viking 2 surface	~30	1
Viking 2 sub-rock	~30	1

Suggested Explanation: Three different oxidants (Klein 1978, 1979)

- 1. A strong thermally stable oxidant eg. KO₂, ZnO₂, CaO₂ at 3-35 ppm/m
- 2. A strong thermally labile oxidant eg. H₂O₂ at 1 ppm/m
- 3. A weak oxidant γ -Fe₂O₃

fundamental source: atmospheric H₂O₂ produced by UV light, 2x10⁹ molec cm⁻² s⁻¹

Laboratory Simulations

H₂O₂ modified TiO₂ (Quinn and Zent, 1999) is probably the best laboratory simulation todate.

Yen et al. (2000) suggested superoxide ions

Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) for the Phoenix mission (2007).

MECA comprises three main instruments:

- Wet Chemistry Laboratory consisting of four wet cells
- Optical and Atomic Force Microscopes
- Thermal and Electrical Conductivity Probe

Near-term missions

Soil toxicity based on whole organism (plant) response in the environment.

Plant expression Adh/GFP in response to hypobaric stress

Data from R. Ferl & A.L. Paul, Univ. Fla

Mars-like soils on Earth

Laboratory analog: H₂O₂ modified TiO₂

Geological analog: Palagonite from volcanoes in Hawaii & Iceland

Biological & organic analog: Atacama desert soil

Palagonite in Iceland

View of Northern Chile (NASA Space Shuttle)

View of Atacama From Shuttle with Hubble Telescope In the Foreground

-Yungay

Antofagasta

Mars-like soils in the Atacama Desert, Chile

- Organics drop to low levels in the arid core.
- Oxidized organics increase in relative concentration
- No culturable microorganisms
- No recoverable DNA
- Abiotic consumption of organic material

